Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
Add more filters










Publication year range
1.
Bioconjug Chem ; 35(2): 187-202, 2024 02 21.
Article in English | MEDLINE | ID: mdl-38318778

ABSTRACT

To meet the current need for a tumor-selective, targeted therapy regimen associated with reduced toxicity, our laboratory has developed a spontaneously assembled nanostructure that resembles high-density lipoproteins (HDLs). These myristoyl-5A (MYR-5A) nanotransporters are designed to safely transport lipophilic pharmaceuticals, including a novel anthracycline drug (N-benzyladriamycin-14-valerate (AD198)). This formulation has been found to enhance the therapeutic efficacy and reduced toxicity of drugs in preclinical studies of 2D and 3D models of Ewing sarcoma (EWS) and cardiomyocytes. Our findings indicate that the MYR-5A/AD198 nanocomplex delivers its payload selectively to cancer cells via the scavenger receptor type B1 (SR-B1), thus providing a solid proof of concept for the development of an improved and highly effective, potentially personalized therapy for EWS while protecting against treatment-associated cardiotoxicity.


Subject(s)
Doxorubicin/analogs & derivatives , Sarcoma, Ewing , Humans , Sarcoma, Ewing/drug therapy , Nanoconjugates/therapeutic use , Anthracyclines/pharmacology , Anthracyclines/therapeutic use , Antibiotics, Antineoplastic/therapeutic use , Cell Line, Tumor
2.
Am J Physiol Heart Circ Physiol ; 323(3): H577-H584, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35904885

ABSTRACT

Perivascular adipose tissue (PVAT) is distinct from other adipose depots, as it has differential gene and protein profiles and vasoactive functions. We have shown that pregnancy affects the morphology of PVAT surrounding the uterine arteries (utPVAT) differentially than the morphology of nonperivascular reproductive adipose depots (i.e., periovarian adipose tissue, OVAT). Here, we hypothesized that pregnancy modifies the profile (size and molecular mass) of exosome-like extracellular vesicles released by utPVAT (Exo-utPVAT) compared with exosome-like extracellular vesicles released by OVAT (Exo-OVAT) and that primary uterine vascular smooth muscle cells (utVSMCs) can internalize Exo-utPVAT. Our findings indicate that utPVAT from pregnant and nonpregnant rats secrete exosome-like vesicles. Exo-utPVAT from pregnant rats were smaller (i.e., molecular size) and heavier (i.e., molecular mass) than those from nonpregnant rats, whereas pregnancy did not affect the size of Exo-OVAT. Immunocytochemistry and confocal microscopy showed that primary utVSMCs internalized Exo-utPVAT (both tissues from the same pregnant rat) labeled by the lipophilic tracer DiO. Treatment of isolated uterine arteries with Exo-utPVAT did not affect relaxation responses to acetylcholine in pregnant or nonpregnant rats. Collectively, these findings demonstrate a novel type of intercellular communication between Exo-utPVAT and utVSMCs and indicate pregnancy modulates the morphology and cargo of Exo-utPVAT.NEW & NOTEWORTHY Uterine perivascular adipose tissue secretes exosome-like vesicles, which are internalized by their adjacent uterine vascular smooth muscle cells. Consideration of the exosomal communication between adipose tissue and vascular smooth muscle cells in the uterine circulation in mathematical models and experimental designs may help us to improve understanding of mechanisms underlying uterine artery adaptive responses to a healthy pregnancy and during pregnancy complications.


Subject(s)
Exosomes , Adipose Tissue/metabolism , Animals , Cell Communication , Female , Muscle, Smooth, Vascular/physiology , Myocytes, Smooth Muscle , Pregnancy , Rats
3.
J Pharmacol Exp Ther ; 373(1): 113-121, 2020 04.
Article in English | MEDLINE | ID: mdl-31941718

ABSTRACT

Reconstituted high-density lipoprotein (HDL) containing apolipoprotein A-I (Apo A-I) mimics the structure and function of endogenous (human plasma) HDL due to its function and potential therapeutic utility in atherosclerosis, cancer, neurodegenerative diseases, and inflammatory diseases. Recently, a new class of HDL mimetics has emerged, involving peptides with amino acid sequences that simulate the the primary structure of the amphipathic alpha helices within the Apo A-I protein. The findings reported in this communication were obtained using a similar amphiphilic peptide (modified via conjugation of a myristic acid residue at the amino terminal aspartic acid) that self-assembles (by itself) into nanoparticles while retaining the key features of endogenous HDL. The studies presented here involve the macromolecular assembly of the myristic acid conjugated peptide (MYR-5A) into nanomicellar structures and its characterization via steady-state and time-resolved fluorescence spectroscopy. The structural differences between the free peptide (5A) and MYR-5A conjugate were also probed, using tryptophan fluorescence, FÓ§rster resonance energy transfer (FRET), dynamic light scattering, and gel exclusion chromatography. To our knowledge, this is the first report of a lipoprotein assembly generated from a single ingredient and without a separate lipid component. The therapeutic utility of these nanoparticles (due to their capablity to incorporate a wide range of drugs into their core region for targeted delivery) was also investigated by probing the role of the scavenger receptor type B1 in this process. SIGNIFICANCE STATEMENT: Although lipoproteins have been considered as effective drug delivery agents, none of these nanoformulations has entered clinical trials to date. A major challenge to advancing lipoprotein-based formulations to the clinic has been the availability of a cost-effective protein or peptide constituent, needed for the assembly of the drug/lipoprotein nanocomplexes. This report of a robust, spontaneously assembling drug transport system from a single component could provide the template for a superior, targeted drug delivery strategy for therapeutics of cancer and other diseases (Counsell and Pohland, 1982).


Subject(s)
Biomimetic Materials/chemistry , Drug Carriers/chemistry , Lipoproteins, HDL/chemistry , Nanoparticles/chemistry , Spectrometry, Fluorescence/methods , Amino Acid Sequence , Biomimetic Materials/analysis , Drug Carriers/analysis , Lipoproteins, HDL/analysis , Lipoproteins, HDL/genetics , Nanoparticles/analysis
4.
J Oncol ; 2019: 1805841, 2019.
Article in English | MEDLINE | ID: mdl-31275377

ABSTRACT

PURPOSE: The goal of these studies was to provide proof of concept for a novel targeted therapy for Glioblastoma Multiforme (GBM). Methods. These studies involve the evaluation of reconstituted high density lipoprotein (rHDL) nanoparticles (NPs) as delivery agents for the drug, mammalian Target of Rapamycin (mTOR) inhibitor Everolimus (EVR) to GBM cells. Cytotoxicity studies and assessment of downstream effects, including apoptosis, migration, and cell cycle events, were probed, in relation to the expression of scavenger receptor B type 1 (SR-B1) by GBM cells. RESULTS: Findings from cytotoxicity studies indicate that the rHDL/EVR formulation was 185 times more potent than free EVR against high SR-B1 expressing cell line (LN 229). Cell cycle analysis revealed that rHDL/EVR treated LN229 cells had a 5.8 times higher apoptotic cell population than those treated with EVR. The sensitivity of GBM cells to EVR treatment was strongly correlated with SR-B1 expression. CONCLUSIONS: These studies present strong proof of concept regarding the efficacy of delivering EVR and likely other agents, via a biocompatible transport system, targeted to the SR-B1 receptor that is upregulated in most cancers, including GBM. Targeting the SR-B1 receptor could thus lead to effective personalized therapy of GBM.

5.
Oncogene ; 38(33): 6095-6108, 2019 08.
Article in English | MEDLINE | ID: mdl-31289363

ABSTRACT

Current anti-angiogenic therapy for cancer is based mainly on inhibition of the vascular endothelial growth factor pathway. However, due to the transient and only modest benefit from such therapy, additional approaches are needed. Deregulation of microRNAs (miRNAs) has been demonstrated to be involved in tumor angiogenesis and offers opportunities for a new therapeutic approach. However, effective miRNA-delivery systems are needed for such approaches to be successful. In this study, miRNA profiling of patient data sets, along with in vitro and in vivo experiments, revealed that miR-204-5p could promote angiogenesis in ovarian tumors through THBS1. By binding with scavenger receptor class B type 1 (SCARB1), reconstituted high-density lipoprotein-nanoparticles (rHDL-NPs) were effective in delivering miR-204-5p inhibitor (miR-204-5p-inh) to tumor sites to suppress tumor growth. These results offer a new understanding of miR-204-5p in regulating tumor angiogenesis.


Subject(s)
Angiogenesis Inhibitors/therapeutic use , Carcinoma, Ovarian Epithelial/drug therapy , Carcinoma, Ovarian Epithelial/genetics , MicroRNAs , Neovascularization, Pathologic/genetics , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Angiogenesis Inhibitors/pharmacology , Animals , Carcinoma, Ovarian Epithelial/blood supply , Carcinoma, Ovarian Epithelial/pathology , Cell Line, Tumor , Female , Gene Expression Regulation, Neoplastic/drug effects , HEK293 Cells , Humans , Mice , Mice, Nude , MicroRNAs/antagonists & inhibitors , MicroRNAs/genetics , Molecular Targeted Therapy/methods , Neovascularization, Pathologic/drug therapy , Ovarian Neoplasms/blood supply , Ovarian Neoplasms/pathology , RNA, Small Interfering/pharmacology , RNA, Small Interfering/therapeutic use , Xenograft Model Antitumor Assays
6.
Apoptosis ; 24(1-2): 21-32, 2019 02.
Article in English | MEDLINE | ID: mdl-30610505

ABSTRACT

Current therapeutic strategies used in Ewing sarcoma (ES) especially for relapsed patients have resulted in modest improvements in survival over the past 20 years. Combination therapeutic approach presents as an alternative to overcoming drug resistance in metastatic ES. This study evaluated the effect of Clotam (tolfenamic acid or TA), a small molecule and inhibitor of Specificity protein1 (Sp1) and survivin for sensitizing ES cell lines to chemotherapeutic agent, vincristine (VCR). ES cells (CHLA-9 and TC-32) were treated with TA or VCR or TA + VCR (combination), and cell viability was assessed after 24/48/72 h. Effect of TA or VCR or TA + VCR treatment on cell cycle arrest and apoptosis were evaluated using propidium iodide, cell cycle assay and Annexin V flow cytometry respectively. The apoptosis markers, caspase 3/7 (activity levels) and cleaved-PARP (protein expression) were measured. Cardiomyocytes, H9C2 were used as non-malignant cells. While, all treatments caused time- and dose-dependent inhibition of cell viability, interestingly, combination treatment caused significantly higher response (~ 80% inhibition, p < 0.05). Cell viability inhibition was accompanied by inhibition of Sp1 and Survivin. TA + VCR treatment significantly (p < 0.05) increased caspase 3/7 activity which strongly correlated with upregulated c-PARP level and Annexin V staining. Cell cycle arrest was observed at G0/G1 (TA) or G2/M (VCR and TA + VCR). All treatments did not cause cytotoxicity in H9C2 cells. These results suggest that TA could enhance the anti-cancer activity of VCR in ES cells. Therefore, TA + VCR combination could be further tested to develop as safe/effective therapeutic strategy for treating ES.


Subject(s)
Bone Neoplasms/pathology , Cell Proliferation/drug effects , Sarcoma, Ewing/pathology , Vincristine/pharmacology , ortho-Aminobenzoates/pharmacology , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Bone Neoplasms/metabolism , Bone Neoplasms/mortality , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Child , Drug Synergism , Humans , Sarcoma, Ewing/metabolism , Sarcoma, Ewing/mortality , Survivin/metabolism
7.
Nanoscale ; 11(2): 541-551, 2019 Jan 03.
Article in English | MEDLINE | ID: mdl-30543234

ABSTRACT

Despite the widespread use of nanotechnology in radio-imaging applications, lipoprotein based delivery systems have received only limited attention so far. These studies involve the synthesis of a novel hydrophobic radio-imaging tracer consisting of a hydrazinonicotinic acid (HYNIC)-N-dodecylamide and 99mTc conjugate that can be encapsulated into rHDL nanoparticles (NPs). These rHDL NPs can selectively target the Scavenger Receptor type B1 (SR-B1) that is overexpressed on most cancer cells due to excess demand for cholesterol for membrane biogenesis and thus can target tumors in vivo. We provide details of the tracer synthesis, characterization of the rHDL/tracer complex, in vitro uptake, stability studies and in vivo application of this new radio-imaging approach.


Subject(s)
Lipoproteins, HDL/chemistry , Nanoparticles/metabolism , Nicotinic Acids/chemistry , Radioactive Tracers , Radionuclide Imaging/methods , Technetium/chemistry , Animals , Drug Delivery Systems , Humans , Lipoproteins, HDL/administration & dosage , Lipoproteins, HDL/metabolism , Liposomes/administration & dosage , Liposomes/chemistry , Liposomes/metabolism , Mice, Inbred BALB C , Mice, Nude , Nanoparticles/administration & dosage , Nanoparticles/chemistry , PC-3 Cells , Scavenger Receptors, Class B/metabolism , Tissue Distribution
8.
Front Pharmacol ; 9: 1154, 2018.
Article in English | MEDLINE | ID: mdl-30374303

ABSTRACT

Drug delivery to malignant tumors is limited by several factors, including off-target toxicities and suboptimal benefits to cancer patient. Major research efforts have been directed toward developing novel technologies involving nanoparticles (NPs) to overcome these challenges. Major obstacles, however, including, opsonization, transport across cancer cell membranes, multidrug-resistant proteins, and endosomal sequestration of the therapeutic agent continue to limit the efficiency of cancer chemotherapy. Lipoprotein-based drug delivery technology, "nature's drug delivery system," while exhibits highly desirable characteristics, it still needs substantial investment from private/government stakeholders to promote its eventual advance to the bedside. Consequently, this review focuses specifically on the synthetic (reconstituted) high-density lipoprotein rHDL NPs, evaluating their potential to overcome specific biological barriers and the challenges of translation toward clinical utilization and commercialization. This highly robust drug transport system provides site-specific, tumor-selective delivery of anti-cancer agents while reducing harmful off-target effects. Utilizing rHDL NPs for anti-cancer therapeutics and tumor imaging revolutionizes the future strategy for the management of a broad range of cancers and other diseases.

9.
Analyst ; 143(12): 2819-2827, 2018 Jun 11.
Article in English | MEDLINE | ID: mdl-29774908

ABSTRACT

Fluorescence signal enhancement induced by the binding of intercalators to DNA has been broadly utilized in various DNA detection methods. In most instances the increase in fluorescence intensity is associated with a concomitant increase of fluorescence lifetime. This increase of the fluorescence lifetime presents an additional opportunity to increase detection sensitivity. In this paper, we present a new approach to significantly enhance the sensitivity in detecting minute DNA concentrations. The approach is based on simultaneous use of time-gated detection and multi-pulse pumping. By using a calibrated burst of short pulses we greatly enhance the contribution of long-lived fluorescence species, thus enabling easy time-gated detection. Using a classic DNA intercalator - Ethidium Bromide (EtBr) - as an example with our novel multi-pulse pumping and time-gated detection technique, we were able to increase detection sensitivity over 70-fold with only 3 pulse excitation. This approach is generic and can be used with any analytical probe (exhibiting about 10 times change in lifetime) that shows an increase in fluorescence signal and fluorescence lifetime upon binding to a target.


Subject(s)
DNA/analysis , Intercalating Agents/chemistry , Spectrometry, Fluorescence , Ethidium
10.
Ther Deliv ; 9(4): 257-268, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29495929

ABSTRACT

The physiological role(s) of mammalian plasma lipoproteins is to transport hydrophobic molecules (primarily cholesterol and triacylglycerols) to their respective destinations. Lipoproteins have also been studied as drug-delivery agents due to their advantageous payload capacity, long residence time in the circulation and biocompatibility. The purpose of this review is to briefly discuss current findings with the focus on each type of formulation's potential for clinical applications. Regarding utilizing lipoprotein type formulation for cancer therapeutics, their potential for tumor-selective delivery is also discussed.


Subject(s)
Drug Compounding/methods , Drug Delivery Systems/methods , Lipoproteins/chemistry , Nanoparticles/chemistry , Theranostic Nanomedicine/methods , Animals , Antineoplastic Agents/administration & dosage , Apolipoprotein A-I/administration & dosage , Atherosclerosis/drug therapy , Biomimetic Materials/chemistry , Clinical Trials as Topic , Drug Compounding/trends , Drug Delivery Systems/trends , Humans , Neoplasms/drug therapy , Phospholipids/administration & dosage , Recombinant Proteins/administration & dosage , Theranostic Nanomedicine/trends
11.
Phys Chem Chem Phys ; 19(44): 29934-29939, 2017 Nov 15.
Article in English | MEDLINE | ID: mdl-29090298

ABSTRACT

Styryl dyes, specifically LDS group dyes, are known solvatochromic and electrochromic probes for monitoring mitochondrial potential in cellular environments. However, the ability of these dyes to respond to fluctuations in viscosity, pH and temperature has not been established. In this study, we demonstrated that LDS 798 (also known as Styryl-11) can sense environmental viscosity (via fluorescence lifetime changes) as well as pH changes (ratiometric intensity change) in the absence of polarity variations. Polarity changes can be probed by spectral changes using LDS 798. Therefore, all properties of the media should be considered, when these types of dyes are used as electrochromic/solvatochromic sensors in cellular environments.

12.
Front Physiol ; 8: 732, 2017.
Article in English | MEDLINE | ID: mdl-29081749

ABSTRACT

The systemic circulation offers larger resistance to the blood flow than the pulmonary system. Consequently, the left ventricle (LV) must pump blood with more force than the right ventricle (RV). The question arises whether the stronger pumping action of the LV is due to a more efficient action of left ventricular myosin, or whether it is due to the morphological differences between ventricles. Such a question cannot be answered by studying the entire ventricles or myocytes because any observed differences would be wiped out by averaging the information obtained from trillions of myosin molecules present in a ventricle or myocyte. We therefore searched for the differences between single myosin molecules of the LV and RV of failing hearts In-situ. We show that the parameters that define the mechanical characteristics of working myosin (kinetic rates and the distribution of spatial orientation of myosin lever arm) were the same in both ventricles. These results suggest that there is no difference in the way myosin interacts with thin filaments in myocytes of failing hearts, and suggests that the difference in pumping efficiencies are caused by interactions between muscle proteins other than myosin or that they are purely morphological.

13.
Int J Nanomedicine ; 12: 1453-1464, 2017.
Article in English | MEDLINE | ID: mdl-28260891

ABSTRACT

Current cancer chemotherapy is frequently associated with short- and long-term side effects, affecting the quality of life of cancer survivors. Because malignant cells are known to overexpress specific surface antigens, including receptors, targeted drug delivery is often utilized to reduce or overcome side effects. The current study involves a novel targeting approach using specifically designed nanoparticles, including encapsulation of the anti-cancer drug valrubicin into superparamagnetic iron oxide nanoparticle (SPION) containing reconstituted high-density lipoprotein (rHDL) nanoparticles. Specifically, rHDL-SPION-valrubicin hybrid nanoparticles were assembled and characterized with respect to their physical and chemical properties, drug entrapment efficiency and receptor-mediated release of the drug valrubicin from the nanoparticles to prostate cancer (PC-3) cells. Prussian blue staining was used to assess nanoparticle movement in a magnetic field. Measurements of cytotoxicity toward PC-3 cells showed that rHDL-SPION-valrubicin nanoparticles were up to 4.6 and 31 times more effective at the respective valrubicin concentrations of 42.4 µg/mL and 85 µg/mL than the drug valrubicin alone. These studies showed, for the first time, that lipoprotein drug delivery enhanced via magnetic targeting could be an effective chemotherapeutic strategy for prostate cancer.


Subject(s)
Antineoplastic Agents/administration & dosage , Doxorubicin/analogs & derivatives , Drug Delivery Systems/methods , Lipoproteins, HDL/chemistry , Magnetite Nanoparticles/administration & dosage , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Dextrans , Dose-Response Relationship, Drug , Doxorubicin/administration & dosage , Doxorubicin/chemistry , Doxorubicin/pharmacology , Humans , Iron/chemistry , Lipoproteins, HDL/administration & dosage , Magnetite Nanoparticles/chemistry , Male , Prostatic Neoplasms/drug therapy , Scavenger Receptors, Class B/metabolism
14.
Chem Commun (Camb) ; 52(61): 9510-3, 2016 Jul 21.
Article in English | MEDLINE | ID: mdl-27294828

ABSTRACT

Stretching a polymer film induces a conformational change (from the twisted to planar state) in the embedded porphyrin dimer, as evidenced by steady-state and time-resolved emission spectra.

15.
Phys Chem Chem Phys ; 18(6): 4535-40, 2016 Feb 14.
Article in English | MEDLINE | ID: mdl-26795882

ABSTRACT

Photophysical behaviour of a novel trimeric BODIPY rotor with a high extinction coefficient is reported. Steady state and time resolved fluorescence measurements established that the trimer could be used as a viscometer for molecular solvents, membrane-like environments and several cancer cell lines.


Subject(s)
Boron Compounds/chemistry , Polymers/chemistry , Triazines/chemistry , Viscosity
16.
J Photochem Photobiol B ; 155: 60-5, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26735001

ABSTRACT

Nanoparticles are target-specific drug delivery agents that are increasingly used in cancer therapy to enhance bioavailability and to reduce off target toxicity of anti-cancer agents. Valrubicin is an anti-cancer drug, currently approved only for vesicular bladder cancer treatment because of its poor water solubility. On the other hand, valrubicin carrying reconstituted high density lipoprotein (rHDL) nanoparticles appear ideally suited for extended applications, including systemic cancer chemotherapy. We determined selected fluorescence properties of the free (unencapsulated) drug vs. valrubicin incorporated into rHDL nanoparticles. We have found that upon encapsulation into rHDL nanoparticles the quantum yield of valrubicin fluorescence increased six fold while its fluorescence lifetime increased about 2 fold. Accordingly, these and potassium iodide (KI) quenching data suggest that upon incorporation, valrubicin is localized deep in the interior of the nanoparticle, inside the lipid matrix. Fluorescence anisotropy of the rHDL valrubicin nanoparticles was also found to be high along with extended rotational correlation time. The fluorescence of valrubicin could also be utilized to assess its distribution upon delivery to prostate cancer (PC3) cells. Overall the fluorescence properties of the rHDL: valrubicin complex reveal valuable novel characteristics of this drug delivery vehicle that may be particularly applicable when used in systemic (intravenous) therapy.


Subject(s)
Antineoplastic Agents/chemistry , Contrast Media/chemistry , Doxorubicin/analogs & derivatives , Lipoproteins, HDL/chemistry , Nanoparticles/chemistry , Antineoplastic Agents/metabolism , Apolipoprotein A-I/chemistry , Apolipoprotein A-I/metabolism , Cell Line, Tumor , Contrast Media/metabolism , Doxorubicin/chemistry , Doxorubicin/metabolism , Humans , Lipoproteins, HDL/metabolism , Microscopy, Confocal , Spectrometry, Fluorescence , Temperature
18.
J Lumin ; 168: 62-68, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26594061

ABSTRACT

In this paper, we have synthesized BSA protected gold nanoclusters (BSA Au nanocluster) and studied the effect of quencher, protein denaturant, pH and temperature on the fluorescence properties of the tryptophan molecule of the BSA Au nanocluster and native BSA. We have also studied their effect on the peak emission of BSA Au nanoclusters (650 nm). The phtophysical characterization of a newly developed fluorophore in different environments is absolutely necessary to futher develop their biomedical and analytical applications. It was observed from our experiments that the tryptophan in BSA Au nanoclusters is better shielded from the polar environment. Tryptophan in native BSA showed a red shift in its peak emission wavelength position. Tryptophan is a highly polarity sensitive dye and a minimal change in its microenvironment can be easily observed in its photophysical properties.

19.
Dyes Pigm ; 117: 16-23, 2015 Jun 01.
Article in English | MEDLINE | ID: mdl-26594075

ABSTRACT

A cationic azadioxatriangulenium (ADOTA) dye was entrapped in silica thin films obtained by the sol-gel process and in poly (vinyl) alcohol (PVA) thin films. Azadioxatriangulenium is a red emitting fluorophore with a long fluorescence lifetime of ~20 ns. The fluorescent properties of azadioxatriangulenium in silica thin films and PVA films were studied by means of steady-state and time resolved fluorescence techniques. We have found that the azadioxatriangulenium entrapped in silica thin film has a wider fluorescence lifetime distribution (Lorentzian distribution), lower fluorescence efficiencies, shorter lifetimes compared to Azadioxatriangulenium in a PVA film. The local environment of azadioxatriangulenium molecules in the silica thin film is rich with water and ethanol, which creates the possibility of forming excited state aggregates due to high concentration of dye within a small confined area. In contrast to the PVA matrices, the porous silica films allow restricted rotations of Azadioxatriangulenium molecules, which result in faster and complex fluorescence anisotropy decays suggesting energy migration among dye molecules.

20.
Nanoscale ; 7(42): 17729-34, 2015 Nov 14.
Article in English | MEDLINE | ID: mdl-26452215

ABSTRACT

In this report, we describe a plasmonic platform with silver fractals for metal enhanced fluorescence (MEF) measurements. When a dye containing surface was brought into contact with silver fractals, a significantly enhanced fluorescence signal from the dye was observed. Fluorescence enhancement was studied with the N-methyl-azadioxatriangulenium chloride salt (Me-ADOTA·Cl) in PVA films made from 0.2% PVA (w/v) solution spin-coated on a clean glass coverslip. The Plasmonic Platforms (PP) were assembled by pressing together silver fractals on one glass slide and a separate glass coverslip spin-coated with a uniform Me-ADOTA·Cl in PVA film. In addition, we also tested ADOTA labeled human serum albumin (HSA) deposited on a glass slide for potential PP bioassay applications. Using the new PP, we could achieve more than a 20-fold fluorescence enhancement (bright spots) accompanied by a decrease in the fluorescence lifetime. The experimental results were used to calculate the extinction (excitation) enhancement factor (GA) and fluorescence radiative rate enhancements factor (GF). No change in emission spectrum was observed for a dye with or without contact with fractals. Our studies indicate that this type of PP can be a convenient approach for constructing assays utilizing metal enhanced fluorescence (MEF) without the need for depositing the material directly on metal structures platforms.


Subject(s)
Fractals , Silver/chemistry , Fluorescent Dyes/chemistry , Humans , Microscopy, Confocal , Nanostructures/chemistry , Serum Albumin/chemistry , Serum Albumin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...